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Stokes flow around a circular cylindrical post 
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A slow viscous flow around a circular cylindrical post confined between two 
parallel flat plates is analyzed. The solution is given in the form of a series 
each term of which satisfies the equations of motion and continuity as well as 
the no-slip condition on the plates. A number of arbitrary constants left open in 
the series can then be determined according to the no-slip condition at  the surface 
of the cylinder. Numerical results are presented. The series is found to  be ade- 
quate when the ratio of the distance between the plates and the diameter of the 
post is not much larger than unity. The coefficient of resistance of the flow 
decreases rapidly as the sheet-thickness-to-post-diameter ratio increases. It is 
shown that the series converges rapidly when the thickness ratio is small, so that 
an approximate solution consisting of the two leading terms of the series, gives 
a reasonable representation of the velocity field and a good approximation to the 
flow resistance. 

1. Introduction 
This paper is concerned with the flow of a viscous incompressible fluid around 

a circular cylindrical post confined between two parallel flat plates (see figure 1). 
The motivation of the investigation comes from the study of blood flow in the 
smallest structural unit of the lung. It was proposed by Sobin & Fung (1967) that 
the capillary blood vessels in the alveoli of the lung are best described not as 
tubes, but as forming a ‘sheet ’, so that the alveolar blood flow is a flow between 
two parallel membranes interposed with many posts. The Reynolds number of 
such a flow in the pulmonary alveoli is of the order of to 10-2; hence the 
convective inertia force may justifiably be neglected. Fung & Sobin (1969) 
presented a simplified analysis of the pulmonary blood flow in the alveoli, and 
demonstrated the usefulness of the approach. Also, Lee & Fung (1968) presented 
the results of model experiments on sheet flow. However, a more exact mathe- 
matical treatment is needed. It is the purpose of this paper to present the first step 
towards an analysis of the flow between two parallel plates interposed with a 
regular array of posts. 

The problem, of course, is an old one. In 1898, Hele-Shaw discovered that the 
streamlines of this sort of flow can be used to represent the lines of force around 
a metal cylinder in a dielectric medium in a magnetic field. Using immiscible 
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coloured dye as an indicator, Hele-Shaw obtained a set of beautiful pictures of 
the streamlines around cylinders of various shapes. A little later in the same year, 
Stokes proved mathematically that, when the convective acceleration is neg- 
lected and the plates are very close to each other, the stream function for the 
velocity averaged across the thickness is governed by a two-dimensional Laplace 
equation. Thus the viscous flow around a cylinder between two closely spaced 
plates has the same streamlines as a potential flow of an inviscid fluid around 
a similar cylinder of infinite length. However, as a potential flow cannot satisfy 
the no-slip condition on the surface of the cylinder, the analogy is not complete. 

I 

I !  
r = a  

FIQURE 1. Notations. 

Thus the Stokes solution of Hele-Shaw flow is not exact. On the other hand, 
Stokes argued that the error is sensible only in a region right next to the cylinder 
and that, at a distance further away from the cylinder than the thickness of the 
sheet, the approximation should be good. 

Thompson (1968) used the method of singular perturbation to investigate the 
flow when the sheet-thickness-to-post-diameter ratio, h/a, is much smaller than 1. 
In this case, the field may be divided into two regions: an outer region, in which 
the velocity gradient in the plane of the plates is much smaller than that normal 
to the plates, and an inner region, where all velocity gradients are of the same 
order of magnitude. Thompson shows that the thickness of the inner region is of 
the order of the thickness of the sheet, h. Appropriate solutions in these two 
regions are matched in their range of common validity. The solution is expressed 
in power series of the thickness ratio up to ( h / ~ ) ~ .  

In the pulmonary alveoli, however, the thickness ratio, h/u, is about 2 or 3. 
Thus, neither Stokes's nor Thompson's solution is applicable. In this paper, 
a uniformly valid solution is constructed in the form of an infinite series, the 
general terms of which satisfy the equations of motion, continuity, and the 
no-slip condition on the plates. The boundary condition at  infinity is assumed to 
be a Poiseuille flow in the x-direction, Hence the sum of the series is made to tend 
t o  the Poiseuille solution a t  infinity. On the post surface the solution is expanded 
into a series of orthogonal functions. The coefficients of the expansion are set to 
zero when the no-slip condition is imposed. From this, all unknown constants 
are determined. It will be shown that the series is adequate for practical com- 
putation when h/a < 5; and the velocity distribution and resistance to the flow 
have been calculated numerically for h/a = 0-1, 1 and 5. 
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An approximate solution, which consists of the first two terms of the series, 
is evaluated to show that it furnishes a good approximation to the flow resistance 
when h is not greater than a. In  a companion paper, Lee (1969), the approximate 
solution is extended to construct a flow between two parallel plates interposed 
with a regular array of posts. When h/a+ 0, the approximate solution can be 
expanded in power series of h/a, and it will be shown that the zeroth- and the 
first-order terms compare favourably with those obtained by Thompson. 

2. Method of solution 
Let ( r ,  6, z )  be a set of the cylindrical co-ordinates; let (x, y ,  z )  be a set of Car- 

tesian co-ordinates, with a common z-axis which is the centre-line of the post; 
and with a common origin which is located midway between the plates. In these 
co-ordinate systems, the surface of the post is described by r = a, while the inner 
surfaces of the plates are z = t_ Ir, (see figure 1). 

The fluid velocity v('uz, vy, w,) must satisfy the no-slip condition on the surfaces 
of the post and the plates = 0 at = a, (1) 

v = O  at z = + h .  (2) 

v = U(l  -z2/h2) i as r + 03, (3) 

The flow at infinity is assumed to be a uniform Poiseuille flow. Therefore 

where i is the unit veotor in the x-direction and U is the velocity in the midplane 
z = 0 at  large distance from the post. 

The Reynolds number of the flow will be assumed to be very small, so that the 
equation of motion is the Stokes equation, 

in which p is the viscosity and p is the pressure. The continuity equation for an 
incompressible fluid is 

Equations (4) and ( 5 )  together show that p is a harmonic function and v is 
a biharmonic function. 

To solve the problem, we shall first construct a general solution of the differen- 
tial system (4), ( 5 )  and (2). A summation of these general solutions with arbitrary 
constant multipliers is also a general solution. On this sum, the boundary con- 
ditions (1) and (3) can be imposed to  determine the unknown constants. 

The solution of the differential system (4), ( 5 )  and (2) is the sum of (i) bihar- 
monic functions and (ii) harmonic functions. These will now be discussed briefly. 

(i) Biharmonic solutions satisfying V4v = 0 

According to Almansi's theorem (Fung 1965, p. 207), any biharmonic vector 
function v can be represented in the form 

in which v1 and v, are harmonic functions. Now, if #n(x, y )  and &(x, y )  are any 
two solutions of the differential equation 

v2v = ( l / P ) V P ,  (4) 

v . v  = 0. ( 5 )  

v = ZVl+VZ, (6) 
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where a, is a constant, then the functions 

J. S. Lee and Y .  C .  Funq 

- 
#n(x, Y) CoSanZ, #n(x, Y) sin an2 (8) 

must be harmonic. Hence (2) will certainly be satisfied in the z-component if vz 
takes the form 

where 

Substituting (9) into (4), 

sinanz zcosanz 
sin a, h h cos a,h 

q n ( x )  = 7 - 

(5) ’  and solving for vx, 

2p cosa,x p = - - - Q  ~ 

h ncosa,h 

vY and p ,  one finds 

1 
The no-slip conditions vs( ~f: h) = ul/( & h) = 0 are satisfied if a, satisfies the follow- 

(12) 
ing Characteristic equation: sin2anh = 2anh. 

Approximate values of 2anh are (2n + &) T k i log (472 + 1) w, n = 1’2,  . . . . 
All roots of (12) are complex-valued except a, = 0, which corresponds to 

where 40(x, y) is a harmonic function. For the particular solution (13), the velocity 
can also be derived from a function Po($, y) such that 

and $o(x, y) will be the ha,rmonic conjugate of q50(x, y). Thus this solution may 
also be derived from a complex potential 

@(Z) = $0 +;Po, (15) 

in which @ is an analytic function of the complex variable 2 = x + iy. Equations 
(13) and (14) constitute Stokes’s solution for Hele-Shaw flow. 
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(ii) Harmonic solutions satisfying V2v = 0 ,  p = 0 

By (S), an harmonic solution, which satisfies (2), (4) and (5 ) ,  is of the form 

v,=p=O, 

where k,, = (2n + 1) n/2h with n = 0,1,2, . . . and +,(q 9) are the functions listed 
in (7)  with an replaced by k,. 

A general solution for the flow should now be expressible in series over all the 
solutions given in (9), (11) and (16), and upon transforming these to cylindrical 
co-ordinates, we obtain 

The functions q5n and +, are solutions of (7),  which is well known. The function 
Qo can be taken as any linear combinations of the following: 

rs cos so, rs sin so, r-, cos so, r-, sin so, ( 2 1 )  

Similarly, ~ $ , ~ ( r ,  0) can be taken as any linear combinations of 

I Is(anr) COSSB, Is(a,r) sin s6, 
K,(anr) coss0, Ks(anr) sinso; 

and + n ( ~ ,  19) ca,n be taken as any linear combinations of 

(23) I Is(knr) cossI9, I,(k,r) sinso, 
K,(knr) coss8, K,(knr) sin so, 

where s = 0 ,1 ,2 ,  ... and I,, K,  are modified Bessel functions of the first and 
second kind of order s respectively. By virtue of the boundary condition (3), 
terms involving rs (s > l), Is(anr) and Is(knr) for s 2 0 must be excluded. For 
Ks(anr) to be admissible, Re (a,) > 0 is required. 
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3. Flow around a circular post 

Hence (17), (18), (19) and (20) become 
For a circular post, it is sufficient to give an exact solution by taking s = 1. 

p = ~ ~ - ~ ( ( ~ - b $ ) + R e [  2p Ur C (An+&) K1(anr) cos a,z I)oosH. (27) 
m 

a= 1 Kl( 01, a) cos an h 

Here b, co, cl, ..., A,, B,, ..., po are unknown real constants. Because all terms 
vanish at infinity, except the first terms in v, and vg, (24), (25) and (26) satisfy 
the boundary condition (3). The unknown constants can be determined by (1). 

As cos kcz forms a complete set of orthogonal functions in the interval (0, h), 
we can expand the velocities u, and v, at r = a into a half-range Fourier series. 

Since ,2 m 

where 

v, and v, from (24), (25) can be reduced into the following forms: 
m 

V ,  = Cn(r) cos 8 cos k , ~ ,  
n=O 

m 

vg = C Dn(r)sin8cosk,z. 
n-0 

Then the no-slip condition on the surface of the post 

(32) 

r = a requires that 

C,(U) = 0, D,(u) = 0 (n=0, 1,2, ...). (33) 

As to v,, the coefficients in the series in (26) are not easy to determine: the 
functions ql (z ) ,  q2(z) ... are not orthogonal in the range ( - h  < z < h). As ve is 
an odd function in z, one could expand v, into a Fourier series in sin k,z. However, 
for k, selected above, sinknz does not vanish at z = +h,  and so the boundary 
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condition v,( 5 h) = 0 would not be satisfied by the individual terms. To improve 
the situation, we introduce a set of orthonormal functions Yn(x), which were 
used by Gaydon & Shepherd (1964) in an analogous problem in elasticity 

sinA,z s inhh,~ 
sinh,h sinhAnh 
~ - _ _ _ _  (34 )  

where A,  is a positive eigenvalue of the characteristic equation 

tan An h = tanh An h. (35)  

Approximately, A, = (n+ 2) (r/h), for n = 1 , 2 , 3 ,  .. .. (36 )  

Yn( f h) = Y;( f h) = 0,  (37 )  Note that 

so that, if v, is expanded into a generalized Fourier series, 

m 

v, = En(r) COB 8Y,(x). 
n= 1 

The boundary condition v,( ? h) = 0 is now satisfied identically. The boundary 
condition vZlr=a = 0 requires that 

E,(a) = 0 (n= 1 , 2 , 3  ...). (39)  

It will be seen that (33 )  and (39 )  furnish the correct number of equations for 

The expansion of q,(x) in terms of Yn(z) is given by 
the determinations of the unknown constants b, co, c, ,..., A,, B,, .... 

where 

4. Numerical calculations 
If we truncate the series (31) ,  (32 )  and (38 )  by replacing the upper limit of 

the summations by N, then the conditions (33 )  and (39 )  furnish 3 N  + 2 algebraic 
equations connecting the 3 N + 2  unknowns b, co, c,, ..., c,; A,, A,, ..., A,; 
B,, B,, . . . , B,. These algebraic equations are 

Re[ 5 (Am+iBrn)f, ,]  = 0 ( n = l ,  ..., N ) ,  
m = l  

where d,, em, and f,,, are given in (30 )  and (41) .  
Equations (42) have been solved on a high speed computer for a number of 

representative values of the parameter h/a. The number N is chosen according 
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to  the following criteria: (i) the boundary values of v,lr+, ~ ) , l ~ = ~ ,  v,],=, which 
should be zero, must tolerate an error no greater than 0.0005 times the un- 
disturbed velocity U ,  (ii) the coefficients c,, A,, B, become small for sufficiently 
large n; the last terms cN,  AN, B, must be smaller than 0.0005 times U. For 
example, when hja = I, one requires N = 15. When h/a = 5, one must have 
N = 25. 

h U 

0 

.3 

* s 
- 

2 3 4 5 6 7 8 9 10 
l l L 1 ' l i i '  

U 

-u 

.I B 
0 
0 
3 

h -=  1 
U 

cos 8 
1 2  3 4 5 6 7 8 9 10 

f f ; 4 5 6 7 8 9 10 
I I I I I I )  

r -u  
a 
- 

sin 8 

L 

FIGURE 2. Velocity distributions 9s. ( r -a) /a  for the cases hla = 5, 1 and 0.1. 

In figure 2 the functions v,./cos6 and v,/sin 6 a t  x = 0 and 10 tinies v,/cosO 
a t  x = 0.5h are plottedfor three cases: (a )  h/a = 5(N = 25),7 (b )  h/a = 1 ( N  = 15) 
and ( c )  h/a = 0-1 ( N  = 10). These functions are directly proportional to  the 
velocity distributions. They are plotted against the dimensionless parameter, 
( r - - ) /a ,  which is the distance to the cylinder expressed in units of cylinder 
radius. The v, distribution is seen to depend very much on the thickness ratio h/a. 
It suggests that v, increases from zero to  a maximum value in distance of the 
order of h from the cylinder, and that the maximum value of v, decreases as 
h/a increases. To show this more clearly, v,/sin6 and v,lcos6 a t  x = 0 for the 
case h/a = 0.1 are plotted against the parameter ( r -a ) /h  in figure 3. From 

-1 The N giveii in the parenthesis may not be the smallest N which satisfies the criteria 
of numerical truiication named above. 
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figures 2 and 3 we see that, if h/a is small, very rapid change in uo takes place 
in the vicinity of the post. Such a rapid change in velocity is not indicated for the 
radial velocity v,. When the three cases shown in figure 2 are compared, one 
sees that u, rises more slowly with r / a  for larger h/a. 

U -  ' l=O.l 
v,l,,o - a 

1 2  3 4 5 6 7 8 9 10 

r-a 
I1 
- 

-2u L 
FIGURE 3. Velocity distributions us. (r-a)/h for the case h/a = 0.1. 

-U 0 -U 0 -U 0 U 
L= 9 'I= 2 '=45 A;. A,;A ,,,, 

( b )  

10.5 0 5  \ 0.5 ', 
' I  \ \ 

I 
0 

I 
0 

I 
0 

-U 0 -U 0 -U 0 U 

= 1.45 : = 2 2  c= 3 
a a 

FIGURE 4. Velocity profiles in the z direction at several radial stations. 
(a)  h/a = 5 ;  ( b )  h/a = 1. -, we/sin 8; - - - -, 'U,/COS 8; -.-.-, lOv,/cos 8. 

The velocity component of v, is seen to be very small compared with v, and vo. 
Note that the scale for u, is magnified 10 times in figure 2, as compared with u,, 
ve. u, is significant only within a distance about h from the surface of the cylinder. 
For h/a = 0.1, IvzI is less than 0-002U7 and is too small to be plotted. 

In  figure 4 velocity profiles a t  certain radii are plotted against z for h/a = 5 
and 1. The case h/a = 0.1 is not presented, because in that case the velocity 
profiles for up and uo are nearly parabolic also at larger h/a. The profile for us is 
described mainly by the eigenfunction ql(z) and not parabolic. 
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5 .  Resistance to flow 
The drag acting on the post is 

D = / I h  /0271(pw cos 0 -pro sin O),,, a dO dz, 

where 

are the normal and shear stresses at  the post surface respectively. The drag 
force acting on the post can be expressed by a dimensionless coefficient 

which is a function of the dimensionless parameter hla. 
Due to the presence of the post, the stresses on the plates are modified by 

comparison with those for pure Poiseuille flow. The total additional resistance 
of the flow is not the drag acting on the post alone, but can be computed by a 
summation of all the perturbation forces acting on a cylindrical surface at  very 
large radius concentric with the post. At such a surface r = ro with ro + 00, 

perturbed strain rates and momentum fluxes are a t  most of the order of I/& 
while perturbed pressure is of the order of l/ro. Thus the resistance of the flow 
is solely due to the pressure over the surface r = ro: 

The first term in the parentheses is the resistance of pure Poiseuille flow. The 
second term is the additional resistance due to the presence of the post. We shall 
define a dimensionless coefficient f K  for the ‘additional’ resistance as follows: 

In figure 4, fD and fn are plotted against h/a. As fD and f R  respectively represent 
the drag on the post and the additional resistance on the post and the plates due 
to the presence of the post, the figure shows that for the same h the drag and 
resistance at first drop quickly as the radius of the post decreases and then 
gradually level off to small values. 

Figure 4 also shows that fD is about twice fa. Their difference is equal to the 
force acting on the plates. This force is 

- (-l),c,-Re [ n=l  h(An+iR, ) ] )  acos2anh ’ (47) 
h m  

where pzz = p(av,/ax+ avz/ax). Of course, as it is expected, D -  FR-Fw = 0. 
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6. The two-term approximation 
When we take N = 0, (42)  is reduced to two equations, from which the 

constants b and co can be determined. We shall call this the two-term approxi- 
mation. ( g) 2 K,(kr)  32 cos kz I - -  +--- 

krK,(ka)  7r3 

( 
- g) 2Ki (kr )  32 cos kz +-- Ko(ka) 7r3 

va = 0, (50) 

where k = k,  = 7~/2h .  This solution satisfies the differential equations and the 
boundary conditions at  infinity and on the plates. The only condition that may 
be violated is the no-slip condition on the surface of the post. Therefore, an 
evaluation of the values of v, and v, on r = a, will indicate the accuracy of the 
solution. When we put r = a in (48)  and (49)' we obtain 

upon using the recurrence relations of modified Bessel functions. A simple 
calculation shows that 

z2 32 
1-----coskz < 0.043 for all IzI < h. 1 h2 7r3 

Hence the maximum errors of the approximate solution at  r = a are 

(53)  

The right-hand side of (54)  is small if h/a is small (ka large), and is large if h/a is 
large (ka small). Hence the approximate solution is valid when h/a is small. For 
the limiting case h/a+O (ka + m), the error is bounded by 0*086U/ka or 0 .086u .  
For h / a  = 0.1, 1 and 5, the errors of the approximate solutions at r = a and 
z = 0 are 

5.0 0.45 0.51 4.0 
1 *o 0.052 0.12 1.5 
0.1 0.004 0.068 1.03 
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in which A indicates the error of the argument. In the last column R is the radius 
beyond which and Avolz=o are smaller than 0.01 times U .  In  figure 2 the 
approximate solutions are plotted as dotted lines. We see that in the case 
h/a = 5 the approximate solution is poor in the neighbourhood of the cylinder 
within a distance of about one radius. In  the cases h/a = 1 and 0-1, the difference 
between the approximate and exact solutions cannot be exhibited clearly in 
the figure. 

0 5  1 2 3 5 

hla 
FIGURE 5 .  The dimensionless coefficients fD representing the clrag force acting on the 
post and fR representing the total resistance over and above the Poiseuillian value as 
functions of the h/a ratio. 

Equally good agreement with the exact theory is also shown in calculating the 
drag and resistance of the system. By retaining only the terms associated with 
b and co in (43) and (46), one obtains 

These approximate equations give values of fD and fR 0.5 % larger than the 
exact ones of (44) and (46) when h/a = 1 and 2.4 yh when h/a = 5 .  As modified 
Bessel functions are always positive, (55 )  shows that fD > fR is valid for all h/a. 

With the help of (14) and (16), we can construct a stream function for the 
approximate velocities in (48) and (49). Calculated patterns of streamlines are 
plotted in figure 5 for hja = 5 , l  and 0.1. These patterns are independent of z to 
the accuracy indicated in (54). Comparing the velocity distributions given in 
figure 2, one sees that, for larger values of hla, more fluid is slowed down by the 
presence of the post. This fact is demonstrated in figure 6, which shows that the 
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streamlines, generated from the same position at infinity, are deflected further 
away from the post as the ratio hla increases. 

Let us expand the solution (48), (49) and (51) into an asymptotic series in 
l l ka  when ka -+ 03 (i.e. h + 0). Using the asymptotic expansions for modified 
Bessel functions, replacing the term 32 COB kz/n3 in the velocities by 1 - z2/h2, 
and retaining only terms up to  the first order l lka,  one obtains 

The velocity field, after one neglects the exponential term in vg and all the 
first-order terms involving l / ka ,  reduces to the Stokes's solution of Hele-Shaw 
flow around a circular post. Because the exponential function exp [ka(r/a - l ) ]  
decays rapidly to zero, (57) shows that the velocity vg near the post change 

FIGURE 6. Streamline patterns for the cases h/a = 5, 1 and 0.1. 
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sharply in the &direction (cf. figure 2 ) .  This sharp velocity profile is also demon- 
strated by the following estimations on velocity gradients 

which are obtained by differentiating (56) ,  (57) and neglecting higher-order 
terms. 

Expansions based on the parameter h/a have also been studied by Thompson, 
who separated the flow field into an outer region and an inner region as discussed 
in 9 1. Thompson’s zeroth- and first-order expansions agree with those of (56)) 
(57)  and (58) to the accuracy indicated in (54). Better agreement is obtained 
for the outer pressure. Thompson gives 

(60) 

(61) 

p = p ,  - 2,uUu2[r/a2 + (1 + 1.261h/a)/r]/h2. 

p = p ,  - 2,uUa2[r/a2+ (1 + 1*273h/a)/r]/h2. 

This compares favourably with (58))  which can be put in the form 

7. Conclusions 
A method to determine the flow around a single post confined between two 

parallel plates is presented. The series solution was found to be adequate for 
numerical computation when the ratio of the distance between the plates, 2h, 
and the diameter of the post, 2a, is not larger than 5. Numerical results indicate 
that the dimensionless resistance of the flow drops rapidly at first and then 
gradually levels off as h/a increases. For the flow field around the post, it was 
found that (a)  v, changes rapidly near the post when h/u is small, ( b )  vr also rises 
more rapidly for smaller h/a, and (c) v, is much smaller than v,, v0. 
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